Some Explicit Conditions for a Stationary Representation of the Unilateral Second-Order Spatial ARMA Model

Saidatulnisa Abdullah and Mahendran Shitan*
Department of Mathematics, Faculty of Science, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
*E-mail: mahen698@gmail.com

Abstract

The analysis of the spatial data has been carried out in many disciplines such as demography, meteorology, geology and remote sensing. The spatial data modelling is important because it recognizes the phenomenon of spatial correlation in field experiments. Three main categories of the spatial models, namely, the simultaneous autoregressive (SAR) models (Whittle, 1954), the conditional autoregressive (CAR) models (Bartlett, 1971), and the moving average (MA) models (Haining, 1978) have been studied. Whittle (1954) presented a form of bilateral autoregressive (AR) models, whereas Basu and Reinsel (1993) considered the first-order autoregressive moving average (ARMA) model of the quadrant type. Awang, N. and Mahendran Shitan (2003) presented the second-order ARMA model, and established some explicit stationary conditions for the model. When fitting the spatial models and making prediction, it is assumed that, the properties of the process would not change with sites. Properties like stationarities have to be assumed, and for this reason, it was therefore imperative that the researchers had made certain that the process was stationary. This could be achieved by providing the explicit stationarity conditions for the model. The explicit conditions, for a stationary representation of the second-order spatial unilateral ARMA model denoted as ARMA $(2,1 ; 2,1)$, have been established (Awang, N. and Mahendran Shitan, 2003) and in this paper, some explicit conditions are established for a stationary representation of the second-order spatial unilateral ARMA model, denoted as ARMA $(2,2 ; 2,2)$.

Keywords: ARMA model, spatial model, stationarity

INTRODUCTION

In this study, some conditions for stationarity are established for a more general secondorder autoregressive moving average model:

$$
\begin{align*}
& Y_{i j}=\alpha_{1} Y_{i-l, j}+\alpha_{2} Y_{i, j-1}+\alpha_{3} Y_{i-1, j-1}+\alpha_{4} Y_{i-2, j}+\alpha_{5} Y_{i-2, j-1}+\alpha_{6} Y_{i, j-2}+\alpha_{7} Y_{i-1, j-2}+\alpha_{8} Y_{i-2, j-2}+\varepsilon_{i j}+\theta_{1} \\
& \varepsilon_{i-1, j}+\theta_{2} \varepsilon_{i, j-1}+\theta_{3} \varepsilon_{i-1, j-1} \\
& +\theta_{4} \varepsilon_{i-2, j}+\theta_{5} \varepsilon_{i-2, j-1}+\theta_{6} \varepsilon_{i, j-2}+\theta_{7} \varepsilon_{i-1, j-2}+\theta_{8} \varepsilon_{i-2, j-2} \tag{1}
\end{align*}
$$

where $Y_{i j}$, the value at the site (i, j), is a finite autoregesssion of the values at the sites, which lie in the lower quadrant of (i, j), for $i=1, \ldots, m, j=1, \ldots, n$ and $\varepsilon_{i j}$ are a collection of independent random variables, with $E\left(\varepsilon_{i j}\right)=0$ and $\operatorname{Var}\left(\varepsilon_{i j}\right)=\sigma^{2}$.

In Section 2, sufficient and necessary conditions for the existence of a stationary representation of the model in (1) are established. In Section 3, the conclusions are drawn.

THE CONDITIONS FOR THE SECOND-ORDER ARMA SPATIAL MODEL

First, the backward shift operators B_{1} and B_{2} were defined effectively as $B_{1} Y_{i j}=Y_{i-1, j}$ and $B_{2} Y_{i, j 1}=$ $Y_{i, j 1}$. Equation (1) can then be written as follows:

$$
\begin{align*}
& \left(1-\alpha_{1} B_{1}-\alpha_{2} B_{2}-\alpha_{3} B_{1} B_{2}-\alpha_{4} B_{1}^{2}-\alpha_{5} B_{1}^{2} B_{2}-\alpha_{6} B_{2}^{2}-\alpha_{7} B_{1} B_{2}^{2}-\alpha_{8} B_{1}^{2} B_{2}^{2}\right) Y_{i j} \\
& =\left(1+\theta_{1} B_{1}+\theta_{2} B_{2}+\theta_{3} B_{1} B_{2}+\theta_{4} B_{1}^{2}+\theta_{5} B_{1}^{2} B_{2}+\theta_{6} B_{2}^{2}+\theta_{7} B_{1} B_{2}^{2}+\theta_{8} B_{1}^{2} B_{2}^{2}\right) \varepsilon_{i j} \tag{2}
\end{align*}
$$

Equation (2) can be written more compactly as;

$$
\begin{equation*}
\Phi\left(B_{1}, B_{2}\right) Y_{i j}=\Theta\left(B_{1}, B_{2}\right) \varepsilon_{i j} \tag{3}
\end{equation*}
$$

where

$$
\Phi\left(B_{1}, B_{2}\right)=\left(1-\alpha_{1} B_{1}-\alpha_{2} B_{2}-\alpha_{3} B_{1} B_{2}-\alpha_{4} B_{1}^{2}-\alpha_{5} B_{1}^{2} B_{2}-\alpha_{6} B_{2}^{2}-\alpha_{7} B_{1} B_{2}^{2}-\alpha_{8} B_{1}^{2} B_{2}^{2}\right)
$$

and

$$
\Theta\left(B_{1}, B_{2}\right)=\left(1+\theta_{1} B_{1}+\theta_{2} B_{2}+\theta_{3} B_{1} B_{2}+\theta_{4} B_{1}^{2}+\theta_{5} B_{1}^{2} B_{2}+\theta_{6} B_{2}^{2}+\theta_{7} B_{1} B_{2}^{2}+\theta_{8} B_{1}^{2} B_{2}^{2}\right)
$$

Proposition. For the model defined as in (1), if none of the roots of $\Phi\left(z_{1}, z_{2}\right)=1-\alpha_{1} z_{1}-\alpha_{2} z_{2}-\alpha_{3} z_{1} z_{2}-\alpha_{4} z_{1}^{2}-\alpha_{5} z_{1}^{2} z_{2}-\alpha_{6} z_{2}^{2}-\alpha_{7} z_{1} z_{2}^{2}-\alpha_{8} z_{1}^{2} z_{2}{ }^{2}=0$ lie within the closed unit polydisc $\left(\left|z_{1}\right| \leq 1, \mid z_{2} \leq 1\right)$ then
(i) $\left|\alpha_{6}\right|-\left|\alpha_{2}\right|<1$,
(ii) $\left|\alpha_{3}+\alpha_{2}+\alpha_{5}\right|>\left|\alpha_{7}+\alpha_{6}+\alpha_{8}+\alpha_{4}+\alpha_{1}-1\right|$,
(iii) $\left|\alpha_{3}-\alpha_{2}-\alpha_{5}\right|>\left|\alpha_{7}-\alpha_{6}-\alpha_{8}-\alpha_{4}+\alpha_{1}+1\right|$,
(iv) $\left|\alpha_{4}\right|-\left|\alpha_{1}\right|<1$,
(v) $\left|\alpha_{3}+\alpha_{1}+\alpha_{7}\right|>\left|\alpha_{5}+\alpha_{4}+\alpha_{8}+\alpha_{6}+\alpha_{2}-1\right|$,
(vi) $\left|\alpha_{3}-\alpha_{1}-\alpha_{7}\right|>\left|\alpha_{5}-\alpha_{4}-\alpha_{8}-\alpha_{6}+\alpha_{2}+1\right|$,

Proof of Proposition:

(a) Sufficiency
(i) Since $\Phi\left(z_{1}, z_{2}\right) \neq 0$ forall $\left|z_{1}\right| \leq 1,\left|z_{2}\right| \leq 1$ it implies that for $z_{1}=0, \Phi\left(z_{1}, z_{2}\right) \neq 0$ for $\left|z_{2}\right| \leq 1$. The roots of $\Phi\left(0, z_{2}\right)$ $=1-\alpha_{2} z_{2}-\alpha_{6} z_{2}^{2}=0$ is given by $z_{2}=\frac{-\alpha_{2} \pm \sqrt{\alpha_{2}^{2}+4 \alpha_{6}}}{2 \alpha_{6}}$. However, it is required that $\left|z_{2}\right|>1 \cdot$ Therefore, $z_{2}=\frac{-\alpha_{2} \pm \sqrt{\alpha_{2}^{2}+4 \alpha_{6}}}{2 \alpha_{6}}>1$.

This will give:

$$
\begin{gathered}
\left|\frac{-\alpha_{2} \pm \sqrt{\alpha_{2}^{2}+4 \alpha_{6}}}{2 \alpha_{6}}\right|>1, \\
\left|-\alpha_{2} \pm \sqrt{\alpha_{2}^{2}+4 \alpha_{6}}\right|>2\left|\alpha_{6}\right|, \\
\left(-\alpha_{2} \pm \sqrt{\alpha_{2}^{2}+4 \alpha_{6}}\right)^{2}>4 \alpha_{6}^{2}, \\
\alpha_{2}^{2}+\alpha_{2}^{2}+4 \alpha_{6} \mp 2 \alpha_{2} \sqrt{\alpha_{2}^{2}+4 \alpha_{6}}>4 \alpha_{6}^{2}, \\
\mp 2 \alpha_{2} \sqrt{\alpha_{2}^{2}+4 \alpha_{6}}>4 \alpha_{6}^{2}-2 \alpha_{2}^{2}-4 \alpha_{6}, \\
4 \alpha_{2}^{2}\left(\alpha_{2}^{2}+4 \alpha_{6}\right)>16 \alpha_{6}^{4}+4 \alpha_{2}^{4}+16 \alpha_{6}^{2}-16 \alpha_{2}^{2} \alpha_{6}^{2}-32 \alpha_{6}^{3}+16 \alpha_{2}^{2} \alpha_{6}, \\
16 \alpha_{6}^{4}+16 \alpha_{6}^{2}-16 \alpha_{6}^{2} \alpha_{2}^{2}-32 \alpha_{6}^{3}<0, \\
\alpha_{6}{ }^{2}+1-\alpha_{2}^{2}-2 \alpha_{6}<0, \\
\left(\alpha_{6}-1\right)^{2}<\alpha_{2}^{2}, \\
\left|\alpha_{6}-1\right|<\left|\alpha_{2}\right|, \\
\left|\alpha_{6}\right|-1<\left|\alpha_{2}\right|, \text { and finally } \\
\left|\alpha_{6}\right|-\left|\alpha_{2}\right|<1 .
\end{gathered}
$$

This establishes condition (i).
(ii) Taking $z_{1}=1$ implies that,
$\Phi\left(1, z_{2}\right)=1-\alpha_{1}-\alpha_{2} z_{2}-\alpha_{3} z_{2}-\alpha_{4}-\alpha_{5} z_{2}-\alpha_{6} z_{2}^{2}-\alpha_{7} z_{2}^{2}-\alpha_{8} z_{2}^{2 .}$ The roots of $\Phi\left(1, z_{2}\right)=0$ are given by:

$$
z_{2}=\frac{-\left(\alpha_{2}+\alpha_{3}+\alpha_{5}\right) \pm \sqrt{\left(\alpha_{2}+\alpha_{3}+\alpha_{5}\right)^{2}+4\left(\alpha_{6}+\alpha_{7}+\alpha_{8}\right)\left(1-\alpha_{1}-\alpha_{4}\right)}}{2\left(\alpha_{6}+\alpha_{7}+\alpha_{8}\right)}
$$

However it is required that $\left|z_{2}\right|>1$. Hence, this will give:

$$
\left|-\left(\alpha_{2}+\alpha_{3}+\alpha_{5}\right) \pm \sqrt{\left(\alpha_{2}+\alpha_{3}+\alpha_{5}\right)^{2}+4\left(\alpha_{6}+\alpha_{7}+\alpha_{8}\right)\left(1-\alpha_{1}-\alpha_{4}\right)}\right|>2\left|\alpha_{6}+\alpha_{7}+\alpha_{8}\right| \text {, which will }
$$

lead to:

$$
z_{1}=-1, \text { the roots of }>\left|\alpha_{7}+\alpha_{6}+\alpha_{8}+\alpha_{4}+\alpha_{1}-1\right| .
$$

This establishes condition (ii).
(iii) Taking $z_{1}=-1$, the roots of $\Phi\left(-1, z_{2}\right)=1+\alpha_{1}-\alpha_{2} z_{2}+\alpha_{3} z_{2}-\alpha_{4}-\alpha_{5} z_{2}-\alpha_{6} z_{2}{ }^{2}+\alpha_{7} z_{2}{ }^{2}-\alpha_{8} z_{2}{ }^{2}$ $=0$ is given by:

$$
z_{2}=\frac{-\left(\alpha_{2}-\alpha_{3}-\alpha_{5}\right) \pm \sqrt{\left(\alpha_{3}-\alpha_{2}-\alpha_{5}\right)^{2}-4\left(\alpha_{7}-\alpha_{6}-\alpha_{8}\right)\left(1+\alpha_{1}-\alpha_{4}\right)}}{2\left(\alpha_{7}-\alpha_{6}-\alpha_{8}\right)} .
$$

However, it is required that $\left|z_{2}\right|>1$. This will give:

$$
\left|-\left(\alpha_{3}-\alpha_{2}-\alpha_{5}\right) \pm \sqrt{\left(\alpha_{3}-\alpha_{2}-\alpha_{5}\right)^{2}-4\left(\alpha_{7}-\alpha_{6}-\alpha_{8}\right)\left(1+\alpha_{1}-\alpha_{4}\right)}\right|>2\left|\alpha_{7}-\alpha_{6}-\alpha_{8}\right| \text {, which leads }
$$ to:

$$
\left|\alpha_{3}-\alpha_{2}-\alpha_{5}\right|>\left|\alpha_{7}-\alpha_{6}-\alpha_{8}-\alpha_{4}+\alpha_{1}+1\right| .
$$

This establishes condition (iii).
(iv) Taking $z_{2}=0$, the roots $z_{1}=\frac{-\alpha_{1} \pm \sqrt{\alpha_{1}^{2}+4 \alpha_{4}}}{2 \alpha_{4}}$ requires that $\left|z_{1}\right|>1$.

This produces the following:

$$
\begin{gathered}
4 \alpha_{1}{ }^{2}\left(\alpha_{1}{ }^{2}+4 \alpha_{4}\right)>16 \alpha_{4}^{4}+4 \alpha_{1}{ }^{4}+16 \alpha_{4}{ }^{2}-16 \alpha_{1}{ }^{2} \alpha_{4}{ }^{2}-32 \alpha_{4}{ }^{3}+16 \alpha_{1}{ }^{2} \alpha_{4}, \\
16 \alpha_{4}{ }^{4}+16 \alpha_{4}{ }^{2}-16 \alpha_{1}{ }^{2} \alpha_{4}{ }^{2}-32 \alpha_{4}{ }^{3}<0, \\
\alpha_{4}{ }^{2}+1-\alpha_{1}{ }^{2}-2 \alpha_{4}<0, \\
\left(\alpha_{4}-1\right)^{2}<\alpha_{1}{ }^{2}, \\
\left|\alpha_{4}-1\right|<\left|\alpha_{1}\right|, \text { but } \\
\left|\alpha_{4}\right|-|1|<\left|\alpha_{4}-| |,\right. \text { therefore } \\
\left|\alpha_{4}\right|-1<\left|\alpha_{1}\right|, \\
\left|\alpha_{4}\right|-\left|\alpha_{1}\right|<1 .
\end{gathered}
$$

This establishes condition (iv).
(v) Taking $z_{2}=1$ implies that:
$\Phi\left(z_{1}, 1\right)=1-\alpha_{1} z_{1}-\alpha_{2}-\alpha_{3} z_{1}-\alpha_{4} z_{1}^{2}-\alpha_{5} z_{1}^{2}-\alpha_{6}-\alpha_{7} z_{1}-\alpha_{8} z^{2}$. The roots of $\Phi\left(z_{1}, 1\right)=0$ are given by: $z_{1}=\frac{-\left(\alpha_{1}+\alpha_{3}+\alpha_{7}\right) \pm \sqrt{\left(\alpha_{1}+\alpha_{3}+\alpha_{7}\right)^{2}+4\left(\alpha_{4}+\alpha_{5}+\alpha_{8}\right)\left(1-\alpha_{2}+\alpha_{6}\right)}}{2\left(\alpha_{4}+\alpha_{5}+\alpha_{8}\right)}$.

However, we require that $\left|z_{1}\right|>1$. This will give:

$$
\left|-\left(\alpha_{1}+\alpha_{3}+\alpha_{7}\right) \pm \sqrt{\left(\alpha_{1}+\alpha_{3}+\alpha_{7}\right)^{2}+4\left(\alpha_{4}+\alpha_{5}+\alpha_{8}\right)\left(1-\alpha_{2}+\alpha_{6}\right)}\right|>2\left|\alpha_{4}+\alpha_{5}+\alpha_{8}\right|
$$

which leads to:

$$
\left|\alpha_{3}+\alpha_{1}+\alpha_{7}\right|>\left|\alpha_{5}+\alpha_{4}+\alpha_{8}+\alpha_{6}+\alpha_{2}-1\right| .
$$

This establishes the condition (v).
(vi) Taking $z_{2}=-1$ implies that:
$\Phi\left(z_{1},-1\right)=1-\alpha_{1} z_{1}+\alpha_{2}+\alpha_{3} z_{1}-\alpha_{4} z_{1}^{2}+\alpha_{5} z_{1}^{2}-\alpha_{6}-\alpha_{7} z_{1}-\alpha_{8} z_{1}^{2}$. The roots of $\Phi\left(z_{1},-1\right)=0$ are given by:

$$
z_{1}=\frac{-\left(\alpha_{3}-\alpha_{1}-\alpha_{7}\right) \pm \sqrt{\left(\alpha_{3}-\alpha_{1}-\alpha_{7}\right)^{2}-4\left(\alpha_{5}-\alpha_{4}-\alpha_{8}\right)\left(1+\alpha_{2}-\alpha_{6}\right)}}{2\left(\alpha_{5}-\alpha_{4}-\alpha_{8}\right)} .
$$

However, it is required that $\left|z_{1}\right|>1$. This will give:

$$
\left|-\left(\alpha_{3}-\alpha_{1}-\alpha_{7}\right) \pm \sqrt{\left(\alpha_{3}-\alpha_{1}-\alpha_{7}\right)^{2}-4\left(\alpha_{5}-\alpha_{4}-\alpha_{8}\right)\left(1+\alpha_{2}-\alpha_{6}\right)}\right|>2\left|\alpha_{5}-\alpha_{4}-\alpha_{8}\right|, \text { which leads }
$$ to:

$$
\left|\alpha_{3}-\alpha_{1}-\alpha_{7}\right|>\left|\alpha_{5}-\alpha_{4}-\alpha_{8}-\alpha_{6}+\alpha_{2}+1\right| .
$$

This establishes condition (vi).
(b) Necessity

In (3), if $\Phi\left(z_{1}, z_{2}\right)=0$ has root $\left(w_{1}, w_{2}\right)$, then:

$$
\left(1-\alpha_{1} w_{1}-\alpha_{2} w_{2}-\alpha_{3} w_{1} w_{2}-\alpha_{4} w_{1}^{2}-\alpha_{5} w_{1}^{2} w_{2}-\alpha_{6} w_{2}^{2}-\alpha_{7} w_{1} w_{2}^{2}-\alpha_{8} w_{1}^{2} w_{2}^{2}\right)=0 .
$$

This gives

$$
\begin{equation*}
w_{2}=\frac{-\left(\alpha_{2}+\alpha_{3} w_{1}+\alpha_{5} w_{1}^{2}\right) \pm \sqrt{\left(\alpha_{2}+\alpha_{3} w_{1}+\alpha_{5} w_{1}^{2}\right)^{2}-4\left(\alpha_{6}+\alpha_{7} w_{1}+\alpha_{8} w_{1}^{2}\right)\left(\alpha_{1} w_{1}+\alpha_{4} w_{1}^{2}-1\right)}}{2\left(\alpha_{6}+\alpha_{7} w_{1}+\alpha_{8} w_{1}^{2}\right)} \tag{4}
\end{equation*}
$$

Equation(4) can also be rewritten as, $w_{2}=\frac{-b_{2} \pm \sqrt{b_{2}^{2}-4 a_{2} c_{2}}}{2 a_{2}}$, where:
$a_{2}=\alpha_{6}+\alpha_{7} \operatorname{Re}\left(w_{1}\right)+\alpha_{8}\left|w_{1}\right|^{2}, b_{2}=\alpha_{2}+\alpha_{3} \operatorname{Re}\left(w_{1}\right)+\alpha_{5}\left|w_{1}\right|^{2}$ and $c_{2}=\alpha_{1} \operatorname{Re}\left(w_{1}\right)+\alpha_{4}\left|w_{1}\right|^{2}-1$.
Let $\left|w_{1}\right|$, and write $w_{1}=r \exp (i \phi)$, where $0 \leq r \leq 1,0 \leq \phi \leq 2 \pi$.
We than has:
$|r \exp (i \phi)|<1$ or $|r|<1$. This is equivalent to $-1<r<1$.
The researchers need to establish that no roots of $\Phi\left(\mathrm{z}_{1}, \mathrm{z}_{2}\right)=0$ lie within the closed unit polydisc, and hence, it we need to show that:

$$
\left|w_{2}\right|>1 \text { or }\left|w_{2}\right|^{2}>1 .
$$

For $\left|w_{2}\right|^{2}>1$, we have $\left|\frac{-b_{2} \pm \sqrt{b_{2}^{2}-4 a_{2} c_{2}}}{2 a_{2}}\right|^{2}>1$, or $b_{2}^{2}>\left(a_{2}+c_{2}\right)^{2}$. This means the following is
needed:

$$
\begin{aligned}
& \left(\alpha_{2}+\alpha_{3} \operatorname{Re}\left(w_{1}\right)+\alpha_{5}\left|w_{1}\right|^{2}\right)^{2}>\left(\alpha_{6}+\alpha_{7} \operatorname{Re}\left(w_{1}\right)+\alpha_{8}\left|w_{1}\right|^{2}+\alpha_{1} \operatorname{Re}\left(w_{1}\right)+\alpha_{4}\left|w_{1}\right|^{2}-1\right)^{2} \\
& \quad \text { or } \\
& \alpha_{2}{ }^{2}+\alpha_{3}{ }^{2} r^{2}+\alpha_{5}{ }^{2} r^{4}+2\left(\left|\alpha_{2} \alpha_{3}\right| r+\left|\alpha_{2} \alpha_{5}\right| r^{2}+\left|\alpha_{3} \alpha_{5}\right| r^{3}\right)>\alpha_{6}{ }^{2}+\alpha_{7}{ }^{2} r^{2}+\alpha_{8}{ }^{2} r^{4} \\
& +2\left(\left|\alpha_{6} \alpha_{7}\right| r+\left|\alpha_{7} \alpha_{8}\right| r^{3}+\left|\alpha_{6} \alpha_{8}\right| r^{2}\right)
\end{aligned}
$$

$$
\begin{aligned}
& +\alpha_{1}{ }^{2} r^{2}+\alpha_{4}{ }^{2} r^{4}+1+2\left(\left|\alpha_{1} \alpha_{4}\right| r^{3}-\left|\alpha_{1}\right| r-\left|\alpha_{4}\right| r^{2}\right) \\
& +2\left(\left|\alpha_{1} \alpha_{6}\right| r+\left|\alpha_{4} \alpha_{6}\right| r^{2}-\left|\alpha_{6}\right|+\left|\alpha_{1} \alpha_{7}\right| r^{2}+\left|\alpha_{4} \alpha_{7}\right| r^{3}-\left|\alpha_{7}\right| r+\left|\alpha_{1} \alpha_{8}\right| r^{3}+\left|\alpha_{4} \alpha_{8}\right| r^{4}-\left|\alpha_{8}\right| r^{2}\right)
\end{aligned}
$$

Nevertheless, it is sufficient to show that:

$$
\alpha_{2}^{2}-\alpha_{6}^{2}-1+2\left|\alpha_{6}\right|>M,
$$

where $\mathrm{M}=\sup _{0 \leq r \leq 1} f(r)$

$$
\begin{aligned}
= & \sup _{0 \leq r \leq 1}\left\{\alpha_{7}^{2} r^{2}+\alpha_{8}{ }^{2} r^{4}+2\left(\left|\alpha_{6} \alpha_{7}\right| r+\left|\alpha_{7} \alpha_{8}\right| r^{3}+\left|\alpha_{6} \alpha_{8}\right| r^{2}\right)\right. \\
& +\alpha_{1}^{2} r^{2}+\alpha_{4}^{2} r^{4}+2\left(\left|\alpha_{1} \alpha_{4}\right| r^{3}-\left|\alpha_{1}\right| r-\left|\alpha_{4}\right| r^{2}\right) \\
& +2\left(\left|\alpha_{1} \alpha_{6}\right| r+\left|\alpha_{4} \alpha_{6}\right| r^{2}+\left|\alpha_{1} \alpha_{7}\right| r^{2}+\left|\alpha_{4} \alpha_{7}\right| r^{3}-\left|\alpha_{7}\right| r+\left|\alpha_{1} \alpha_{8}\right| r^{3}+\left|\alpha_{4} \alpha_{8}\right| \alpha_{7}\left|r^{4}-\left|\alpha_{8}\right| r^{2}\right)\right. \\
& \left.-\alpha_{3}^{2} r^{2}-\alpha_{5}^{2} r^{4}-2\left(\left|\alpha_{2} \alpha_{3}\right| r+\left|\alpha_{2} \alpha_{5}\right| r^{2}+\left|\alpha_{3} \alpha_{5}\right| r^{3}\right)\right\}
\end{aligned}
$$

The function $f(r)$ may attain its minimum over, $0 \leq r \leq 1$ at $r=0$, in which case $\alpha_{2}{ }^{2}-\alpha_{6}{ }^{2}$ $-1+2\left|\alpha_{6}\right|>0$, or $\left|\alpha_{6}\right|-\left|\alpha_{2}\right|<1$, is needed, and this follows condition (i):
Similarly, the function $f(r)$ may attain its maximum over $0 \leq r \leq 1$ at $r=1$, in which, the following is needed:

$$
\begin{aligned}
& \alpha_{2}{ }^{2}-\alpha_{6}{ }^{2}-1+2\left|\alpha_{6}\right|>\alpha_{7}{ }^{2}+\alpha_{8}{ }^{2}+2\left(\left|\alpha_{6} \alpha_{7}\right|+\left|\alpha_{7} \alpha_{8}\right|+\left|\alpha_{6} \alpha_{8}\right|\right) \\
& +\alpha_{1}{ }^{2}+\alpha_{4}{ }^{2}+2\left(\left|\alpha_{1} \alpha_{4}\right|-\left|\alpha_{1}\right|-\left|\alpha_{4}\right|\right) \\
& +2\left(\left|\alpha_{1} \alpha_{6}\right|+\left|\alpha_{4} \alpha_{6}\right|+\left|\alpha_{1} \alpha_{7}\right|+\left|\alpha_{4} \alpha_{7}\right|-\left|\alpha_{7}\right|+\left|\alpha_{1} \alpha_{8}\right|+\left|\alpha_{4} \alpha_{8}\right|-\left|\alpha_{8}\right|\right)-\alpha_{3}{ }^{2}-\alpha_{5}{ }^{2} \\
& -2\left(\left|\alpha_{2} \alpha_{3}\right|+\left|\alpha_{2} \alpha_{5}\right|+\left|\alpha_{3} \alpha_{5}\right|\right) .
\end{aligned}
$$

This can also be re-expressed as:

$$
\begin{aligned}
& \alpha_{2}{ }^{2}+\alpha_{3}{ }^{2}+\alpha_{5}{ }^{2}+2\left(\left|\alpha_{2} \alpha_{3}\right|+\left|\alpha_{2} \alpha_{5}\right|+\left|\alpha_{3} \alpha_{5}\right|>\alpha_{6}{ }^{2}+\alpha_{7}{ }^{2}+\alpha_{8}{ }^{2}+\alpha_{1}{ }^{2}+\alpha_{4}{ }^{2}+1\right. \\
& +2\left(\left|\alpha_{6} \alpha_{7}\right|+\left|\alpha_{7} \alpha_{8}\right|+\left|\alpha_{4} \alpha_{7}\right|+\left|\alpha_{1} \alpha_{7}\right|-\left|\alpha_{7}\right|\right) \\
& +2\left(\left|\alpha_{6} \alpha_{8}\right|+\left|\alpha_{4} \alpha_{6}\right|+\left|\alpha_{1} \alpha_{6}\right|-\left|\alpha_{6}\right|\right) \\
& \left.+2\left(\left|\alpha_{4} \alpha_{8}\right|+\left|\alpha_{1} \alpha_{8}\right|-\left|\alpha_{8}\right|\right)+2\left|\alpha_{1} \alpha_{4}\right|-2\left|\alpha_{4}\right|-2\left|\alpha_{1}\right|\right) .
\end{aligned}
$$

From the above $\left|\alpha_{3}+\alpha_{2}+\alpha_{5}\right|>\left|\alpha_{7}+\alpha_{6}+\alpha_{8}+\alpha_{4}+\alpha_{1}-1\right|$, can be obtained, and this follows condition (ii).

The function $f(r)$ may also attain its maximum over $0 \leq r \leq 1$ at $r=1$, in which the following is needed:

$$
\begin{aligned}
& \alpha_{2}{ }^{2}-\alpha_{6}{ }^{2}-1-2\left|\alpha_{6}\right|>\alpha_{7}{ }^{2}+\alpha_{8}{ }^{2}+2\left(-\left|\alpha_{6} \alpha_{7}\right|-\left|\alpha_{7} \alpha_{8}\right|+\left|\alpha_{6} \alpha_{8}\right|\right) \\
& +\alpha_{1}{ }^{2}+\alpha_{4}{ }^{2}+2\left(-\left|\alpha_{1} \alpha_{4}\right|+\left|\alpha_{1}\right|-\left|\alpha_{4}\right|\right) \\
& +2\left(-\left|\alpha_{1} \alpha_{6}\right|+\left|\alpha_{4} \alpha_{6}\right|+\left|\alpha_{1} \alpha_{7}\right|-\left|\alpha_{4} \alpha_{7}\right|+\left|\alpha_{7}\right|-\left|\alpha_{1} \alpha_{8}\right|+\left|\alpha_{4} \alpha_{8}\right|-\left|\alpha_{8}\right|\right)-\alpha_{3}{ }^{2}-\alpha_{5}{ }^{2} \\
& -2\left(-\left|\alpha_{2} \alpha_{3}\right|+\left|\alpha_{2} \alpha_{5}\right|-\left|\alpha_{3} \alpha_{5}\right|\right) .
\end{aligned}
$$

This can also be re-expressed as:

$$
\begin{aligned}
& \alpha_{2}{ }^{2}+\alpha_{3}{ }^{2}+\alpha_{5}{ }^{2}-2\left(\left|\alpha_{2} \alpha_{3}\right|-\left|\alpha_{2} \alpha_{5}\right|+\left|\alpha_{3} \alpha_{5}\right|>\alpha_{7}{ }^{2}+\alpha_{6}{ }^{2}+\alpha_{8}^{2}+\alpha_{1}{ }^{2}+\alpha_{4}{ }^{2}+1\right. \\
& +2\left(-\left|\alpha_{6} \alpha_{7}\right|-\left|\alpha_{7} \alpha_{8}\right|+\left|\alpha_{1} \alpha_{7}\right|-\left|\alpha_{4} \alpha_{7}\right|+\left|\alpha_{7}\right|\right) \\
& +2\left(\left|\alpha_{6} \alpha_{8}\right|-\left|\alpha_{1} \alpha_{6}\right|+\left|\alpha_{4} \alpha_{6}\right|-\left|\alpha_{6}\right|\right) \\
& +2\left(-\left|\alpha_{1} \alpha_{8}\right|+\left|\alpha_{4} \alpha_{8}\right|-\left|\alpha_{8}\right|\right)+2\left(-\left|\alpha_{1} \alpha_{4}\right|+\left|\alpha_{1}\right|\right)-2\left|\alpha_{4}\right| .
\end{aligned}
$$

From this $\left|\alpha_{3}-\alpha_{2}-\alpha_{5}\right|>\left|\alpha_{7}-\alpha_{6}-\alpha_{8}+\alpha_{1}-\alpha_{4}+1\right|$, can be obtained and this follows condition (iii).

To provide proofs of necessity for conditions (iv) - (vi), (3) will be considered if $\Phi\left(z_{1}\right.$, $\left.z_{2}\right)=0$ has roots $\left(w_{1}, w_{2}\right)$, then

$$
\left(1-\alpha_{1} w_{1}-\alpha_{2} w_{2}-\alpha_{3} w_{1} w_{2}-\alpha_{4} w_{1}^{2}-\alpha_{5} w_{1}^{2} w_{2}-\alpha_{6} w_{2}^{2}-\alpha_{7} w_{1} w_{2}^{2}-\alpha_{8} w_{1}^{2} w_{2}^{2}\right)=0
$$

This gives

$$
\begin{equation*}
w_{1}=\frac{-\left(\alpha_{1}+\alpha_{3} w_{2}+\alpha_{7} w_{2}^{2}\right) \pm \sqrt{\left(\alpha_{1}+\alpha_{3} w_{2}+\alpha_{7} w_{2}^{2}\right)^{2}-4\left(\alpha_{4}+\alpha_{5} w_{2}+\alpha_{8} w_{2}^{2}\right)\left(\alpha_{2} w_{2}+\alpha_{6} w_{2}^{2}-1\right)}}{2\left(\alpha_{4}+\alpha_{5} w_{2}+\alpha_{8} w_{2}^{2}\right)} \tag{5}
\end{equation*}
$$

Equation (5) can also be rewritten as $w_{1}=\frac{-b_{1} \pm \sqrt{b_{1}^{2}-4 a_{1} c_{1}}}{2 a_{1}}$, where:
$a_{1}=\alpha_{4}+\alpha_{5} \operatorname{Re}\left(w_{2}\right)+\alpha_{8}\left|w_{2}\right|^{2}, b_{1}=\alpha_{1}+\alpha_{3} \operatorname{Re}\left(w_{2}\right)+\alpha_{7}\left|w_{2}\right|^{2}$ and $c_{1}=\alpha_{2} \operatorname{Re}\left(w_{2}\right)+\alpha_{6}\left|w_{2}\right|^{2}-1$.
Let $\left|w_{2}\right| \leq 1$, and write $w_{2}=r \exp (i \phi)$, where $0 \leq r \leq 1,0 \leq \phi \leq 2 \pi$.
Since $|r \exp (i \phi)|<1$ or $\mid \eta<1$, This is equivalent to $-1<r<1$.
Similarly, it is crucial to establish that no roots of $\Phi\left(\mathrm{z}_{1}, \mathrm{z}_{2}\right)=0$ lie within the closed unit polydisc, and for this reason, it is therefore important to show that:

$$
\left|w_{1}\right|>1 \text { or }\left|w_{1}\right|^{2}>1 .
$$

For $\left|w_{1}\right|^{2}>1,\left|\frac{-b_{1} \pm \sqrt{b_{1}^{2}-4 a_{1} c_{1}}}{2 a_{1}}\right|^{2}>1$, or $b_{1}^{2}>\left(a_{1}+\mathrm{c}_{1}\right)^{2}$ is achieved.
This means, the following is required:

$$
\left(\alpha_{1}+\alpha_{3} \operatorname{Re}\left(w_{2}\right)+\alpha_{7}\left|w_{2}\right|^{2}\right)^{2}>\left(\alpha_{4}+\alpha_{5} \operatorname{Re}\left(w_{2}\right)+\alpha_{8}\left|w_{2}\right|^{2}+\alpha_{2} \operatorname{Re}\left(w_{2}\right)+\alpha_{6}\left|w_{2}\right|^{2}-1\right)^{2}
$$

or

$$
\begin{aligned}
& \alpha_{1}{ }^{2}+\alpha_{3}{ }^{2} r^{2}+\alpha_{7}{ }^{2} r^{4}+2\left(\left|\alpha_{1} \alpha_{3}\right| r+\left|\alpha_{1} \alpha_{7}\right| r^{2}+\left|\alpha_{3} \alpha_{7}\right| r^{3}\right)> \\
& \alpha_{4}+\alpha_{5}{ }^{2} r^{2}+\alpha_{8}{ }^{2} r^{4}+\alpha_{2}{ }^{2} r^{2}+\alpha_{6}{ }^{2} r^{4}+1 \\
& +2\left(\left|\alpha_{4} \alpha_{5}\right| r\left|\alpha_{4} \alpha_{8}\right| r^{2}+\left|\alpha_{2} \alpha_{4}\right| r+\left|\alpha_{4} \alpha_{6}\right| r^{2}-\left|\alpha_{4}\right|\right) \\
& +2\left(\left|\alpha_{5} \alpha_{8}\right| r^{3}+\left|\alpha_{2} \alpha_{5}\right| r^{2}+\left|\alpha_{5} \alpha_{6}\right| r^{3}-\left|\alpha_{5}\right| r\right) \\
& +2\left(\left|\alpha_{2} \alpha_{8}\right| r^{3}+\left|\alpha_{6} \alpha_{8}\right| r^{4}-\left|\alpha_{8}\right| r^{2}\right) \\
& +2\left(\left|\alpha_{2} \alpha_{6}\right| r^{3}-\left|\alpha_{2}\right| r\right)-2\left|\alpha_{6}\right| r^{2} \\
& +2
\end{aligned}
$$

It is sufficient that to show that:

$$
\begin{aligned}
& \alpha_{1}^{2}-\alpha_{4}{ }^{2}+2\left|\alpha_{4}\right|-1>M, \text { where } M=\sup _{0 \leq r \leq} f(r)=\sup _{0 \leq r \leq 1}\left\{\alpha_{5}{ }^{2} r^{2}+\alpha_{8}{ }^{2} r^{4}+\alpha_{2}{ }^{2} r^{2}+\alpha_{6}{ }^{2} r^{4}\right. \\
& +2\left(\left|\alpha_{4} \alpha_{5}\right| r+\left|\alpha_{4} \alpha_{8}\right| r^{2}+\left|\alpha_{2} \alpha_{4}\right| r+\left|\alpha_{4} \alpha_{6}\right| r^{2}\right) \\
& +2\left(\left|\alpha_{5} \alpha_{8}\right| r^{3}+\left|\alpha_{2} \alpha_{5}\right| r^{2}+\left|\alpha_{5} \alpha_{6}\right| r^{3}-\left|\alpha_{5}\right| r\right) \\
& +2\left(\left|\alpha_{2} \alpha_{8}\right| r^{3}+\left|\alpha_{6} \alpha_{8}\right| r^{4}-\left|\alpha_{8}\right| r^{2}\right) \\
& +2\left(\left|\alpha_{2} \alpha_{6}\right| r^{3}\left|\alpha_{2}\right| r\right)-2 \alpha_{6} r^{2}-\alpha_{3}{ }^{2} r^{2}-\alpha_{7}{ }^{2} r^{4} \\
& \left.-2\left(\left|\alpha_{1} \alpha_{3}\right| r+\left|\alpha_{1} \alpha_{7}\right| r^{2}+\left|\alpha_{3} \alpha_{7}\right| r^{3}\right)\right\}
\end{aligned}
$$

The function $f(r)$ may attain its minimum over $0 \leq r \leq 1$ at $r=0$, in which $\alpha_{1}{ }^{2}-\alpha_{4}{ }^{2}+$ $2\left|\alpha_{4}\right|-1>0$ or $\left|\alpha_{4}\right|-\left|\alpha_{1}\right|<1$ is needed, and this follows condition (iv).

In addition, the function $f(r)$ may attain its maximum over $0 \leq r \leq 1$, in which the following is needed:

$$
\begin{aligned}
& \alpha_{1}{ }^{2}-\alpha_{4}{ }^{2}+2\left|\alpha_{4}\right|-1>\alpha_{5}{ }^{2}+\alpha_{8}{ }^{2}+\alpha_{2}{ }^{2}+\alpha_{6}{ }^{2} \\
& +2\left(\left|\alpha_{4} \alpha_{5}\right|+\left|\alpha_{4} \alpha_{8}\right|+\left|\alpha_{2} \alpha_{4}\right|+\left|\alpha_{4} \alpha_{6}\right|\right) \\
& +2\left(\left|\alpha_{5} \alpha_{8}\right|+\left|\alpha_{2} \alpha_{5}\right|+\left|\alpha_{5} \alpha_{6}\right|-\left|\alpha_{5}\right|\right) \\
& +2\left(\left|\alpha_{2} \alpha_{8}\right|+\left|\alpha_{6} \alpha_{8}\right|-\left|\alpha_{8}\right|\right) \\
& +2\left(\left|\alpha_{2} \alpha_{6}\right|-\left|\alpha_{2}\right|\right)-2 \alpha_{6}+\alpha_{3}{ }^{2}-\alpha_{7}{ }^{2} \\
& +2\left(\left|\alpha_{1} \alpha_{3}\right|+\left|\alpha_{1} \alpha_{7}\right|+\left|\alpha_{3} \alpha_{7}\right|\right)
\end{aligned}
$$

This can also be re-expressed as:

$$
\begin{aligned}
& \alpha_{1}{ }^{2}+\alpha_{3}{ }^{2}+\alpha_{7}{ }^{2}+2\left(\left|\alpha_{1} \alpha_{3}\right|+\left|\alpha_{1} \alpha_{7}\right|+\left|\alpha_{3} \alpha_{7}\right|>\alpha_{4}{ }^{2}+\alpha_{5}{ }^{2}+\alpha_{8}{ }^{2}+\alpha_{2}{ }^{2}+\alpha_{6}{ }^{2}+1\right. \\
& +2\left(\left|\alpha_{4} \alpha_{5}\right|+\left|\alpha_{4} \alpha_{8}\right|+\left|\alpha_{2} \alpha_{4}\right|+\left|\alpha_{4} \alpha_{6}\right|-\left|\alpha_{4}\right|\right) \\
& +2\left(\left|\alpha_{5} \alpha_{8}\right|+\left|\alpha_{2} \alpha_{5}\right|+\left|\alpha_{5} \alpha_{6}\right|-\left|\alpha_{5}\right|\right) \\
& +2\left(\left|\alpha_{2} \alpha_{8}\right|+\left|\alpha_{6} \alpha_{8}\right|-\left|\alpha_{8}\right|\right)+2\left(\left|\alpha_{2} \alpha_{6}\right|-2\left|\alpha_{2}\right|-2\left|\alpha_{6}\right|\right) .
\end{aligned}
$$

From this $\left|\alpha_{1}+\alpha_{3}+\alpha_{7}\right|>\left|\alpha_{4}+\alpha_{5}+\alpha_{8}+\alpha_{2}+\alpha_{6}-1\right|$, can be obtained, and this is based on condition (v).

The function $f(r)$ may also attain its maximum over $0 \leq r \leq 1$ at $r=-1$, in which the following is needed:

$$
\begin{aligned}
& \alpha_{1}{ }^{2}-\alpha_{4}{ }^{2}+2\left|\alpha_{4}\right|-1>\alpha_{5}{ }^{2}+\alpha_{8}{ }^{2}+\alpha_{2}{ }^{2}+\alpha_{6}{ }^{2} \\
& +2\left(-\left|\alpha_{4} \alpha_{5}\right|+\left|\alpha_{4} \alpha_{8}\right|-\left|\alpha_{2} \alpha_{4}\right|+\left|\alpha_{4} \alpha_{6}\right|\right) \\
& +2\left(-\left|\alpha_{5} \alpha_{8}\right|+\left|\alpha_{2} \alpha_{5}\right|-\left|\alpha_{5} \alpha_{6}\right|+\left|\alpha_{5}\right|\right) \\
& +2\left(-\left|\alpha_{2} \alpha_{8}\right|+\left|\alpha_{6} \alpha_{8}\right|-\left|\alpha_{8}\right|\right) \\
& +2\left(-\left|\alpha_{2} \alpha_{6}\right|+\left|\alpha_{2}\right|\right)-2\left|\alpha_{6}\right|-\alpha_{3}{ }^{2}-\alpha_{7}{ }^{2} \\
& -2\left(-\left|\alpha_{1} \alpha_{3}\right|+\left|\alpha_{1} \alpha_{7}\right|-\left|\alpha_{3} \alpha_{7}\right|\right)
\end{aligned}
$$

This can be re-expressed as:

$$
\begin{aligned}
& \alpha_{1}{ }^{2}+\alpha_{3}{ }^{2}+\alpha_{7}{ }^{2}+2\left(-\left|\alpha_{1} \alpha_{3}\right|+\left|\alpha_{1} \alpha_{7}\right|-\left|\alpha_{3} \alpha_{7}\right|\right)>\alpha_{4}{ }^{2}+\alpha_{5}{ }^{2}+\alpha_{8}{ }^{2}+\alpha_{2}{ }^{2}+\alpha_{6}{ }^{2}+1 \\
& +2\left(-\left|\alpha_{4} \alpha_{5}\right|-\left|\alpha_{5} \alpha_{8}\right|-\left|\alpha_{5} \alpha_{6}\right|+\left|\alpha_{2} \alpha_{5}\right|+\left|\alpha_{5}\right|\right) \\
& +2\left(\left|\alpha_{4} \alpha_{8}\right|+\left|\alpha_{4} \alpha_{6}\right|-\left|\alpha_{2} \alpha_{4}\right|-\left|\alpha_{4}\right|\right) \\
& \left.+2\left(\left|\alpha_{6} \alpha_{8}\right|-\left|\alpha_{2} \alpha_{8}\right|-\left|\alpha_{8}\right|\right)+2\left(-\left|\alpha_{2} \alpha_{6}\right|-\left|\alpha_{6}\right|\right)+2\left|\alpha_{2}\right|\right)
\end{aligned}
$$

From the above, $\left|\alpha_{3}-\alpha_{1}-\alpha_{7}\right|>\left|\alpha_{5}-\alpha_{4}-\alpha_{8}-\alpha_{6}+\alpha_{2}+1\right|$ can be obtained; this follows condition (vi).

CONCLUSIONS

In this study, some explicit conditions were established for the existence of a stationary representation of the more general second-order unilateral spatial ARMA model, as discussed in Section 2.

The previous models being studied were mostly of the first-order, that is, only the nearest neighbouring sites are used to model the value of a particular site. In some situations, it is
not enough to merely use just the neighbouring values to model the value of a certain site or describe the spatial correlations in the data. Therefore, not only a second-order spatial model is necessary, it can also serve as an alternative to depict the spatial correlation of the data on a regular grid. However, the estimation of the parameters of such a model must be done in such a way that the conditions (set out in Section 2) do not contradict and that the parameters of the model should be maximised with bounded constraints.

REFERENCES

Awang, N. and Mahendran Shitan. (2003). Some explicit stationary conditions for the unilateral secondorder spatial ARMA model. Proc. 1st Internat. Conf. on Research and Education in Mathematics (pp. 96-99), Bangi, Selangor.

Bartlett, M.S. (1971). Physical nearest neighbour models and non-linear time series. J. Appl. Prob., 8, 222-232.

Basu, S. and Reinsel, G.C. (1993). Properties of the spatial unilateral first-order ARMA Model. Adv. Appl. Prob., 25, 631-648.

Haining, R.P. (1978). The moving average model for spatial interaction, Tran. Inst. Br. Geog., 3, 202225.

Whittle, P. (1954). On stationary processes in the plane. Biometrika, 41, 434-449.

